Abstract

The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.