Abstract

Ribonucleotide reductases from Escherichia coli and from mammalian cells are heterodimeric enzymes. One of the subunits, in the bacterial enzyme protein B2 and in the mammalian enzyme protein M2, contains iron and a tyrosyl free radical that both are essential for enzyme activity. The iron center in protein B2 is an antiferromagnetically coupled pair of high-spin ferric ions. This study concerns magnetic interaction between the tyrosyl radical and the iron center in the two proteins. Studies of the temperature dependence of electron paramagnetic resonance (EPR) relaxation and line shape reveal significant differences between the free radicals in proteins B2 and M2. The observed temperature-dependent enhanced EPR relaxation and line broadening of the enzyme radicals are furthermore completely different from those of a model UV-induced free radical in tyrosine. The results are discussed in terms of magnetic dipolar as well as exchange interactions between the free radical and the iron center in both proteins. The free radical and the iron center are thus close enough in space to exhibit magnetic interaction. For protein M2 the effects are more pronounced than for protein B2, indicating a stronger magnetic interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call