Abstract
Abstract Magnetic instabilities play an important role in the understanding of the dynamics of the Earth's fluid core. In this paper we continue our study of the linear stability of an electrically conducting fluid in a rapidly rotating, rigid, electrically insulating spherical geometry in the presence of a toroidal basic state, comprising magnetic field BMB O(r, θ)1⊘ and flow UMU O(r, θ)1⊘ The magnetostrophic approximation is employed to numerically analyse the two classes of instability which are likely to be relevant to the Earth. These are the field gradient (or ideal) instability, which requires strong field gradients and strong fields, and the resistive instability, dependent on finite resistivity and the presence of a zero in the basic state B O(r,θ). Based on a local analysis and numerical results in a cylindrical geometry we have established the existence of the field gradient instability in a spherical geometry for very simple basic states in the first paper of this series. Here, we extend the c...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.