Abstract
Background: Biomass measurement and monitoring is a challenge in a number of biotechnology processes where fast, inexpensive, and non-contact measurement techniques would be of great benefit. Magnetic induction spectroscopy (MIS) is a novel non-destructive and contactless impedance measurement technique with many potential industrial and biomedical applications. The aim of this paper is to use computer modeling and experimental measurements to prove the suitability of the MIS system developed at the University of South Wales for controlled biomass measurements. Methods: The paper reports experimental measurements conducted on saline solutions and yeast suspensions at different concentrations to test the detection performance of the MIS system. The commercial electromagnetic simulation software CST was used to simulate the measurement outcomes with saline solutions and compare them with those of the actual measurements. We adopted two different ways for yeast suspension preparation to assess the system’s sensitivity and accuracy. Results: For saline solutions, the simulation results agree well with the measurement results, and the MIS system was able to distinguish saline solutions at different concentrations even in the small range of 0–1.6 g/L. For yeast suspensions, regardless of the preparation method, the MIS system can reliably distinguish yeast suspensions with lower concentrations 0–20 g/L. The conductivity spectrum of yeast suspensions present excellent separability between different concentrations and dielectric dispersion property at concentrations higher than 100 g/L. Conclusions: The South Wales MIS system can achieve controlled yeast measurements with high sensitivity and stability, and it shows promising potential applications, with further development, for cell biology research where contactless monitoring of cellular density is of relevance.
Highlights
Bio-impedance versus the frequency of the applied electromagnetic field, known as the bio-impedance spectrum, is an important property of biological samples
Sensors 2019, 2019, 19, 33of of 13 test. Aiming to address these difficulties, in this paper, we focus on the biomass measurement used lead to food serious measurement errors using and even and damage samples under test
AimingWe to in the industry application the contaminate non-destructive and non-contact address these difficulties, in this paper, we focus on the biomass measurement used in the food industry evaluate the feasibility of biomass measurement using the South Wales Magnetic induction spectroscopy (MIS) system [27]
Summary
Bio-impedance versus the frequency of the applied electromagnetic field, known as the bio-impedance spectrum, is an important property of biological samples. It can be characterized by passive electrical properties of biological samples. For most non-magnetic biological samples, permittivity and conductivity are the two most important passive electrical properties, which are both frequency-dependent and can be used as a unique signature to distinguish different samples or different states within the same sample. Methods: The paper reports experimental measurements conducted on saline solutions and yeast suspensions at different concentrations to test the detection performance of the MIS system. The conductivity spectrum of yeast suspensions present excellent separability between different concentrations and dielectric dispersion property at concentrations higher than 100 g/L.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.