Abstract

Based on the modified Heisenberg–Kitaev model, the effects of magnetic substitution on the magnetic properties of the honeycomb-lattice iridate are studied using Monte Carlo simulations. It is observed that the long-range zigzag state of the original system is rather fragile and can be replaced by a spin-glass state even for small substitution, well consistent with the experimental observation in Ru-substituted samples (Mehlawat et al 2015 Phys. Rev. B 92 134412). Both the disordered Heisenberg and Kitaev interactions caused by the magnetic ion-doping are suggested to be responsible for the magnetic phase transitions in the system. More interestingly, a short-range zigzag order is suggested to survive above the freezing temperature even at high magnetic impurity doping levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.