Abstract
A general neural approach to magnetic hysteresis modeling is proposed. The general memory storage properties of systems with rate independent hysteresis are outlined. Thus, it is shown how it is possible to build a neural hysteresis model based on feed-forward neural networks (NN's) which fulfills these properties. The identification of the model consists in training the NN's by usual training algorithms such as backpropagation. Finally, the proposed neural model has been tested by comparing its predictions with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.