Abstract

Abstract The integration of nanoparticles with magnetic, ferroelectric or semiconducting properties into liquid crystals (LCs) has attracted great interest both for fundamental investigations and for technological applications. Here, an overview of hybrid materials based on magnetic nanoparticles (MNPs) and thermotropic LCs is given. After a general introduction to thermotropic LCs and LC-MNP hybrid materials, various preparation methods established by us are presented. The synthesis of shape-(an)isotropic MNPs, their functionalization by tailored (pro)mesogenic ligands with linear or dendritic structures and their integration into LC hosts are discussed. The characterization of the MNPs, (pro)mesogenic ligands and resulting MNP-LC hybrid materials is described to show the influence of MNP functionalization on the MNP-LC interactions including aspects such as colloidal stability and structuring in the LC host. Overall, we show that the physical properties of the hybrid material are significantly influenced not only by the MNPs (i.e., their size, shape and composition) but also by their surface properties (i.e., the structure of the (pro)mesogenic ligands).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.