Abstract
In this work, we analyse the method of forming magneto-optically active heterostructures based on magnetic layers with different magnetic properties. Layers of one type possess a high effective constant of uniaxial magnetic anisotropy for which the condition is fulfilled, where Ku is the constant of uniaxial magnetic anisotropy and is the demagnetizing energy, and layers of the second type used possess in-plane or quasi-in-plane magnetization, in which the condition holds true. The layers of the first type, which we refer to as layers of positive effective uniaxial magnetic anisotropy, may have the composition Bi2Dy1Fe4Ga1O12 and the layers of second type the composition Bi3Fe5O12, which may have very high magneto-optic (MO) figure of merit and are therefore very attractive for the development of MO transparencies and ultra-fast switches. We discuss the optimization of triple-layer structure parameters aimed at achieving a high MO figure of merit simultaneously with low coercivity and high remanent magnetization and possessing rectangular hysteresis loops. The results of the experimental study of the MO properties achieved in garnet heterostructures fabricated using RF sputtering are also described. We show that the proposed paradigm of using new magnetic material combinations demonstrating significantly improved magnetic and MO properties may be realized when working with heterostructures based on Bi-substituted ferrite garnets grown on (1 1 1)-oriented garnet substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.