Abstract

Multifunctional nanoplatforms developed from natural polymers and graphene oxide (GO) with enhanced biological/physicochemical features have recently attracted attention in the biomedical field. Herein, a new multifunctional near-infrared (NIR) light-, pH- and magnetic field-sensitive hybrid nanoplatform (mGO@AL-g-PHPM@ICG/EP) is developed by combining iron oxide decorated graphene oxide nanosheets (mGO) and poly(2-hydroxypropylmethacrylamide) grafted alginate (AL-g-PHPM) copolymer loaded with indocyanine green (ICG) and etoposide (EP) for chemo/phototherapy. The functional groups, specific crystal structure, size, morphology, and thermal stability of the nanoplatform were fully characterized by XRD, UV, FTIR, AFM/TEM/FE-SEM, VSM, DSC/TG, and BET analyses. In this platform, the mGO and ICG, as phototherapeutic agents, demonstrate excellent thermal effects and singlet oxygen production under NIR-light (808 nm) irradiation. The XRD and DSC analysis confirmed the amorphous state of the ICG/EP in the nanoparticles. In vitro photothermal tests proved that the mGO@AL-g-PHPM@ICG/EP nanoparticles had outstanding light stability and photothermal conversion ability. The in vitro release profiles presented NIR light-, pH- and magnetic field-controlled EP/ICG release behaviors. In vitro experiments demonstrated the excellent antitumor activity of the mGO@AL-g-PHPM@ICG/EP against H1299 tumor cells under NIR laser. Benefiting from its low-cost, facile preparation, and good dual-modal therapy, the mGO@AL-g-PHPM@ICG/EP nanoplatform holds great promise in multi-stimuli-sensitive drug delivery and chemo/phototherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.