Abstract

Within cancer, there is a large wealth of diversity, complexity, and information that nature has engineered rendering it challenging to identify reliable detection methods. Therefore, the development of simple and effective techniques to delineate the fine characteristics of cancer cells can have great potential impacts on cancer diagnosis and treatment. Herein, we report a magnetic glyco-nanoparticle (MGNP) based nanosensor system bearing carbohydrates as the ligands, not only to detect and differentiate cancer cells but also to quantitatively profile their carbohydrate binding abilities by magnetic resonance imaging (MRI). Using an array of MGNPs, a range of cells including closely related isogenic tumor cells, cells with different metastatic potential and malignant vs normal cells can be readily distinguished based on their respective "MRI signatures". Furthermore, the information obtained from such studies helped guide the establishment of strongly binding MGNPs as antiadhesive agents against tumors. As the interactions between glyco-conjugates and endogenous lectins present on cancer cell surface are crucial for cancer development and metastasis, the ability to characterize and unlock the glyco-code of individual cell lines can facilitate both the understanding of the roles of carbohydrates as well as the expansion of diagnostic and therapeutic tools for cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.