Abstract

Perovskite solid solution ceramics with compositions of 0.9Pb(Fe0.5Nb0.5)O3–0.1PbTiO3, 0.6Pb(Ni1∕3Nb2∕3)O3–0.4PbTiO3, and 0.6Pb(Co1∕3Nb2∕3)O3–0.4PbTiO3 were synthesized by the traditional solid state reaction method. Ferroelectric measurements revealed that these samples have well saturated polarization-electrical field loops. Dielectric measurements showed that abnormal dielectric peaks at their Curie temperature were frequency dependent. Both characteristics indicate that these samples are relaxor type ferroelectric materials. Field cooled and zero field cooled magnetization measurements revealed that the 0.6Pb(Ni1∕3Nb2∕3)O3–0.4PbTiO3 and 0.6Pb(Co1∕3Nb2∕3)O3–0.4PbTiO3 samples are paramagnetic down to 5K, while the 0.9Pb(Fe0.5Nb0.5)O3–0.1PbTiO3 sample shows an antiferromagnetic-like ordering starting from around 40K. Furthermore, a weak ferromagnetism is observed in the 0.9Pb(Fe0.5Nb0.5)O3–0.1PbTiO3 sample, as evidenced by the magnetic hysteresis loop measured at 10K. The ac susceptibility measurement of this sample showed that the peak position around 40K is strongly dependent on frequency, indicating a glassy or relaxor type bahavior below that temperature. Therefore, relaxor type ferroelectric and magnetic 0.9Pb(Fe0.5Nb0.5)O3–0.1PbTiO3 is a magnetoelectric relaxor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call