Abstract

The combination of nuclear and electron magnetic resonance techniques, in pulse and continuous wave regimes, is used to unravel the nature and features of the light-induced magnetic state arising at the surface of chemically prepared zinc oxide nanoparticles (NPs) occurring under 120K when subjected to a sub-bandgap (405nm) laser excitation. It is shown that the four-line structure observed around g ∼ 2.00 in the as-grown samples (beside the usual core-defect signal at g ∼ 1.96) arises from surface-located methyl radicals (•CH3), originating from the acetate capped ZnO molecules. By functionalizing the as-grown zinc oxide NPs with deuterated sodium acetate, the •CH3 electron paramagnetic resonance (EPR) signal is replaced by trideuteromethyl (•CD3). For •CH3, •CD3, and core-defect signals, an electron spin echo is detected below ∼100K, allowing for the spin-lattice and spin-spin relaxation-time measurements for each of them. Advanced pulse-EPR techniques reveal the proton or deuteron spin-echo modulation for both radicals and give access to small unresolved superhyperfine couplings between adjacent •CH3. In addition, electron double resonance techniques show that some correlations exist between the different EPR transitions of •CH3. These correlations are discussed as possibly arising from cross-relaxation phenomena between different rotational states of radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call