Abstract
Magnetic force microscopy has the capability to detect magnetic domains from a close distance, which can provide the magnetic force gradient image of the scanned samples and also simultaneously obtain atomic force microscope (AFM) topography image as well as AFM phase image. In this work, we demonstrate the use of magnetic force microscopy together with AFM topography and phase imaging for the characterization of magnetic iron oxide nanoparticles and their cellular uptake behavior with the MCF7 carcinoma breast epithelial cells. This method can provide useful information such as the magnetic responses of nanoparticles, nanoparticle spatial localization, cell morphology, and cell surface domains at the same time for better understanding magnetic nanoparticle-cell interaction. It would help to design magnetic-related new imaging, diagnostic and therapeutic methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.