Abstract

The domain width and domain wall energy of the Ce2Fe14-xCoxB solid solution are studied for the first time in this work. The influence of Co content on these properties has been analyzed with the aid of magnetic force microscopy using diffusion couple and key alloys. The domain widths of Ce2Fe14-xCoxB decreased with increasing Co content at about 0.02 μm per 1 at.% Co. In Ce2Fe14-xCoxB, phase shift, domain width and saturation magnetization are related in a way that lower average domain width is associated with higher phase shift and higher saturation magnetization. The highest domain wall energy of Ce2Fe14-xCoxB is measured as 31.7 erg/cm2 after dissolving 14 at.% Co (x = 2.38). The effects of Ni and Cu on the domain width and domain wall energy of Ce2Fe14-xCoxB (x = 1.02) are also studied and reported using response surfaces. The domain width and domain wall energy of this solid solution increased after doping with 1 at.% Ni at constant Co content of 6 at.%, measuring 1.39 μm for domain width and 33.4 erg/cm2 for domain wall energy. Both properties were determined as 0.71 μm and 18.6 erg/cm2, respectively, after doping with 0.8 at.% Cu, while keeping Co content constant at 6 at.%. When Ce2Fe14-xCoxB (x = 1.02) is doped with both Ni (1 at.%) and Cu (0.8 at.%), the domain width and domain wall energy measured 0.99 μm and 33.8 erg/cm2, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call