Abstract

A novel magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy to sustainably power portable electrics is presented. Based on the effective conjunction of electromagnetic induction and triboelectrification, the hybrid nanogenerator with a small dimension consists of an electromagnetic generator (EMG) with a peak output power of 3.4mW under a load resistance of 200Ω and a triboelectric nanogenerator (TENG) with a peak output power of 0.23mW under a load resistance of 25 MΩ. For TENG, the electrospun Fe3O4 nanoparticles embedded PVDF fibers membrane is employed as triboelectric layer. A magnet is utilized as the trigger to non-contactly drive contact-separation mode TENG due to the magnetic responsiveness of triboelectric materials, and the EMG can be drived by coupling magnet with copper coils simultaneously. The hybrid nanogenerator exhibits a good stability for the output performance and charging performance, so it can be utilized to charge energy storage devices and sustainably power some portable electronics. This work demonstrates a novel prototype of hybrid nanogenerators toward harvesting human biomechanical energy and its potential applications in building up self-powered systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.