Abstract

Josephson junctions (JJs) are superconductor-based devices used to build highly sensitive magnetic flux sensors called superconducting quantum interference devices (SQUIDs). These sensors may vary in design, being the radio frequency (RF) SQUID, direct current (DC) SQUID, and hybrid, such as D-SQUID. In addition, recently many of JJ's applications were found in spiking models of neurons exhibiting nearly biological behavior. In this study, we propose and investigate a new circuit model of a sensory neuron based on DC SQUID as part of the circuit. The dependence of the dynamics of the designed model on the external magnetic flux is demonstrated. The design of the circuit and derivation of the corresponding differential equations that describe the dynamics of the system are given. Numerical simulation is used for experimental evaluation. The experimental results confirm the applicability and good performance of the proposed magnetic-flux-sensitive neuron concept: the considered device can encode the magnetic flux in the form of neuronal dynamics with the linear section. Furthermore, some complex behavior was discovered in the model, namely the intermittent chaotic spiking and plateau bursting. The proposed design can be efficiently applied to developing the interfaces between circuitry and spiking neural networks. However, it should be noted that the proposed neuron design shares the main limitation of all the superconductor-based technologies, i.e., the need for a cryogenic and shielding system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.