Abstract

Magnetically-impelled arc butt-welding (MIAB) is a pressure-welding process. In this process, heat is generated prior to forging by an arc created between two clamped and aligned tubes. This arc rapidly rotates along the peripheral edges of the tubes to be welded due to the electromagnetic force resulting from the interaction of the arc current and the magnetic field in the gap. To be precise, the magnetic flux density is the significant parameter that governs the arc rotation and the weld quality. This paper presents a three-dimensional finite-element model to determine the magnetic flux density distribution in the MIAB welding process. The objective of this study is to perform a non-linear electromagnetic analysis using the finite-element package ANSYS, and to explore the interdependence of MIAB welding parameters such as gap size, exciting current in the coil, and coil position from the weld centre, which influence the electromagnetic force generated in the welding process and weld quality. The results of this analysis are verified with the available experimental data for steel tubes (outer diameter 50 mm and thickness 2 mm). The results obtained using finite-element analysis establish that the magnetic flux density distribution in the gap increases with increasing exciting current and decreasing gap size and coil position from the weld centre.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call