Abstract

The inhibition of checkpoint receptors (PD-1, PD-L1, and CTLA-4) with monoclonal antibodies has shown great benefit in clinical trials for treating cancer patients and has become a mainstay approach in modern cancer immunotherapy. However, only a subset of patients respond to checkpoint monoclonal antibody immunotherapy. Therefore, it is urgent to develop new therapeutic strategies against cancer. A novel B-cell peptide epitope PDL1 (programmed death ligand 1) cancer vaccine has been developed, with amino acids 130-147 linked to the MVF peptide ("promiscuous" T-cell measles virus fusion protein) via a GPSL linker. Preclinical testing has indicated that this PDL1 vaccine (PDL1-Vaxx) effectively stimulates highly immunogenic antibodies in animals. Animals immunized with PDL1-Vaxx show reduced tumor burden and extended survival rates in various animal cancer models. The mechanisms of action indicate that vaccine-elicited antibodies inhibit tumor cell proliferation, induce apoptosis, and block the PD-1/PD-L1 interaction. This manuscript introduces a magnetic bead-based assay that uses a dual-reporter flow analysis system to evaluate the PD-1/PD-L1 interaction and its blockade by the anti-PDL1 antibodies raised against the PDL1-Vaxx.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call