Abstract

The unique properties of magnetic nanoparticles (MNP) and their interactions with their environment have given rise to innovative R&D possibilities outside the field of conventional magnetism. One such example is in the field of energy science, and in particular, the thermal engineering. In this respect, research on refrigeration technology based on the magnetoconvection property of ferrofluids (FF) has attracted great attention in the past decades. On the other hand, the thermoelectric energy conversion (or more commonly known as “thermopower”) in ferrofluids has so far remained underexplored. This subchapter describes this very new research path in the field of magnetic nanoparticle science, from its theoretical background and motivation, a few existing example of experimental investigations and the future perspectives. The unique properties of magnetic nanoparticles (MNP) and their interactions with their environment have given rise to innovative R&D possibilities outside the field of conventional magnetism. One such example is in the field of energy science, and in particular, the thermal engineering. In this respect, research on refrigeration technology based on the magnetoconvection property of ferrofluids (FF) has attracted great attention in the past decades. On the other hand, the thermoelectric energy conversion (or more commonly known as “thermopower”) in ferrofluids has so far remained underexplored. This subchapter describes this very new research path in the field of magnetic nanoparticle science, from its theoretical background and motivation, a few existing example of experimental investigations and the future perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.