Abstract
We present VLA observations of the Zeeman effect in 22 GHz H2O masers in several high-mass star-forming regions. These masers are believed to arise from collisional pumping in postshock environments. Therefore, the Zeeman effect data provide the most direct measurements of magnetic field strengths in high-density (n 108 cm-3) postshock gas, where the field energy determines other physical conditions. Our observations yield significant magnetic field detections in W3 IRS 5, W3(OH), W49 N, and OH 43.8-0.1. In these sources, we detect line-of-sight field strengths ranging from 13 to 49 mG. For some regions, the detected fields provide a 2-3 point sampling of the magnetic field, indicating the nature of field variations on arcsecond scales. These field strengths are consistent with a shock-driven maser model having relatively low speed (20 km s-1), C-type shocks. We examine the balance between magnetic field energy and turbulent kinetic energy in the masing regions. These energies appear close to equilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.