Abstract
Average magnetic field measurements are presented for 62 M-dwarf members of the Pleiades open cluster, derived from Zeeman-enhanced Fe i lines in the H band. A Markov Chain Monte Carlo methodology was employed to model magnetic filling factors using Sloan Digital Sky Survey (SDSS) IV APOGEE high-resolution spectra, along with the radiative transfer code Synmast, MARCS stellar atmosphere models, and the APOGEE Data Release 17 spectral line list. There is a positive correlation between mean magnetic fields and stellar rotation, with slow-rotator stars (Rossby number, Ro > 0.13) exhibiting a steeper slope than rapid rotators (Ro < 0.13). However, the latter sample still shows a positive trend between Ro and magnetic fields, which is given by 〈B〉 = 1604 × Ro−0.20. The derived stellar radii when compared with physical isochrones show that, on average, our sample shows radius inflation, with median enhanced radii ranging from +3.0% to +7.0%, depending on the model. There is a positive correlation between magnetic field strength and radius inflation, as well as with stellar spot coverage, correlations which together indicate that stellar spot-filling factors generated by strong magnetic fields might be the mechanism that drives radius inflation in these stars. We also compare our derived magnetic fields with chromospheric emission lines (Hα, Hβ, and Ca ii K), as well as with X-ray and Hα to bolometric luminosity ratios, and find that stars with higher chromospheric and coronal activity tend to be more magnetic.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.