Abstract

We quantify the effects of magnetic fields, cosmic rays and gas pressure on the rotational velocity of HI gas in the Milky Way, at galactic distances between Rsun and 2Rsun. The magnetic field is modelled by two components; a mainly azimuthal magnetic component and a small-scale tangled field. We construct a range of plausible axisymmetric models consistent with the strength of the total magnetic field as inferred from radio synchrotron data. In a realistic Galactic disk, the pressure by turbulent motions, cosmic rays and the tangled turbulent field provide radial support to the disk. Large-scale (ordered) magnetic fields may or may not provide support to the disk, depending on the local radial gradient of the azimuthal field. We show that for observationally constrained models, magnetic forces cannot appreciably alter the tangential velocity of HI gas within a galactic distance of 2Rsun.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.