Abstract

The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to $\simeq0.5\:{\rm{pc}}$. Including an empirically motivated prescription for star formation from dense gas ($n_{\rm{H}}>10^5\:{\rm{cm}^{-3}}$) at an efficiency of 2\% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated $B$-field case of $80\:{\rm{\mu}}$G. However, our chosen kpc-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.