Abstract
The anchoring properties of a film of anisotropically adsorbed liquid crystal (LC) molecules on a rigid substrate have been studied. The LC film was prepared by cooling it from the isotropic phase in the presence of a magnetic field parallel to the surface of the substrate. Relationship between the anchoring energy, easy axis direction and angular distribution of the adsorbed molecules, and changes in their angular distribution due to adsorption–desorption, were studied. The dependence of the anchoring energy on the duration and the temperature at which the LC film is annealed allowed an estimation of the activation energy of desorption of LC molecules on ITO surface, ΔE≈0.55 eV. The results suggest that hydrogen bonds are responsible for the adsorption of LC molecules on the substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.