Abstract

Low temperature ground state properties of Mn0.75Fe0.25Si are investigated based on temperature and magnetic field dependent behavior of specific heat and resistivity. Paramagnon spin fluctuations assisted non-Fermi liquid is suppressed by magnetic fields and gradual evolution of Fermi liquid is demonstrated. The tendency of magnetic field-induced crossover from non-Fermi to Fermi liquid behavior is illustrated by suitable magneto-specific heat scaling which reveals unusual quantum critical phenomenon in a 3d transition metal derived paramagnetic compound. In the absence of magnetic fields, Kadowaki–Wood's Ratio (KWR) A/γ2 is about 8.5μΩcmmol2K2J−2 which is 85% close to the originally proposed KWR and reaches 100% under the moderate magnetic fields of 0.7T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.