Abstract

The origins of the solar wind and the interplanetary magnetic field sector structure in the beginning of the magnetic polarity reversal of 24th solar cycle were investigated using the Wilcox Solar Observatory magnetic field measurements and their products as well as the solar wind data from ACE and the SDO/AIA EUV images. The dominance of the quadrupole harmonics in the solar magnetic field in this period resulted in a four-sector structure of the interplanetary magnetic field. The dominating source of recurrent high-speed solar wind stream was a large trans-equatorial coronal hole of negative polarity evolving in the course of the polarity reversal process. The contribution of ICMEs to the high-speed solar wind did not exceed 17% of the total flux. The solar wind density flux averaged over the year amounted to 1 × 108 cm−2 s−1 which is considerably lower than the typical long-term value (2–4 × 108 cm−2 s−1 ). The slow-speed component of solar wind density flux constituted in average more than 68% of the total flux, the high-speed component was about 10%, reaching the maximum of 32% in some Carrington rotations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.