Abstract

Superconducting coplanar waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations, or suppressing superconductivity entirely. To mitigate these effects we investigate lithographically defined artificial defects in resonators fabricated from NbTiN superconducting films. We show that by controlling the vortex dynamics the quality factor of resonators in perpendicular magnetic fields can be greatly enhanced. Coupled with the restriction of the device geometry to enhance the superconductors critical field, we demonstrate stable resonances that retain quality factors $\simeq 10^5$ at the single photon power level in perpendicular magnetic fields up to $B_\perp \simeq$ 20 mT and parallel magnetic fields up to $B_\parallel \simeq$ 6 T. We demonstrate the effectiveness of this technique for hybrid systems by integrating an InSb nanowire into a field resilient superconducting resonator, and use it to perform fast charge readout of a gate defined double quantum dot at $B_\parallel =$ 1 T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.