Abstract

The dimensionless thermoelectric figure of merit and magnetic field production ability of “natural” nanostructures–layered ternary alloys (TA) of the family [(Ge, Sn, Pb)(Te, Se)]m [(Bi,Sb)2(Te,Se)3]n, with non-isovalent cationic substitution (Ge, Sn, Pb ↔ Bi, Sb) are investigated. In the transition from binary alloys (BA) to TA, we observed the formation of the phase “phonon glass–electronic crystal” (PGEC) and its subsequent degeneracy, accompanied by sharp increase in the carrier densities in the samples. As a result, the size ZT of samples went down, and the size X substantially increased, which speaks in the work to formation of a degenerated PGEC phase under non-isovalent cationic substitution in the samples. Comparison with known thermoelectric materials (ТEMs) (metals, semimetals, and semiconductors) used for production of magnetic fields H in contours of short-circuited ТC has shown that the investigated TA forms a new class of TEMs for magnetic field production with raised values of parameters X and Y.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.