Abstract

The transport of plasma and of energetic particles because of magnetic turbulence is relevant to many space plasmas, ranging from the planetary magnetospheres to the solar corona and to the heliosphere. Various transport regimes for magnetic field lines can be obtained depending on the Kubo number. Here we show, by means of a numerical simulation, that the Kubo number also determines the level of chaos of the field lines. Weak chaos, closed magnetic surfaces, and anomalous transport regimes are obtained for R ≪ 1; widespread chaos, destroyed magnetic surfaces, and quasilinear scaling of the diffusion coefficient for R ≳ 0.3; and global stochasticity as well as percolation scaling of the diffusion coefficient for R ≫ 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.