Abstract
The oxygen-deficient strontium iron oxide SrFeO3−δ (SFO) exhibits richness in the phase diagram over a broad range of temperatures and for other external parameters. Room-temperature X-ray diffraction and Raman spectrum reveals that the structure of synthesized SFO system consists of two mixed phases, i.e., major orthorhombic and minor tetragonal phases. The low-temperature Raman and vibrating sample magnetometer measurements indicated a structural transition below 253 K. The magnetic property of the synthesized SFO for various external magnetic field (up to 5 T) reveals possible variation in oxygen stoichiometry. Also, the application of external H increases Neel transition temperature (T N), suppresses the hysteresis width (W H), and thus weakens the first-order nature of the transition. Our analysis revealed the vanishing of hysteresis and the first-order antiferromagnetic transition becomes a crossover above a critical magnetic field H CR ≈ 5 T. Possible switching of magnetic ordering and oxidation state observed in same system enhances interest in related compounds which may be used in magnetic sensors and other magnetic switching devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.