Abstract

We analyze the effects induced by single-ion anisotropy on quantum criticality in a d-dimensional spin-3/2 planar ferromagnet. To tackle this problem we employ the two-time Green's function method, using the Tyablikov decoupling for exchange interactions and the Anderson-Callen decoupling for single-ion anisotropy. In our analysis the role of non-thermal control parameter which drives the quantum phase transition is played by a longitudinal external magnetic field. We find that the single-ion anisotropy has substantial effects on the structure of the phase diagram close to the quantum critical point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call