Abstract

We examine the effect of shear flow on the orientational phase transitions induced by a magnetic field in ferronematic liquid crystals. Continuum approach based on the generalized Leslie–Ericksen theory is used to describe the dynamics of ferronematic liquid crystals. We consider three orientations of the magnetic field in a plane of shear flow. Stationary solutions for the director and the magnetization are obtained as functions of the magnetic field strength for different values of material parameters. Our results show that shear flow can lead to the shift of the field thresholds or to a “smoothing” of the magnetic field-induced transitions in ferronematics. In the limiting case of pure nematic liquid crystals, we revealed threshold effects, which are unstipulated by the orientational elasticity of a liquid crystal, in contrast to the conventional Fréedericksz transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.