Abstract

The interplay of electron correlations and topological phases gives rise to various exotic phenomena including fractionalization, excitonic instability and axionic excitation. Recently discovered transition-metal pentatellurides can reach the ultra-quantum limit in low magnetic fields and serve as good candidates for achieving such a combination. Here, we report evidence of density wave and metal-insulator transition in HfTe5 induced by intense magnetic fields. Using the non-linear transport technique, we detect a distinct non-linear conduction behavior in the longitudinal resistivity within the a-c plane, corresponding to the formation of a density wave induced by magnetic fields. In high fields, the onset of non-linear conduction in the Hall resistivity indicates an impurity-pinned magnetic freeze-out as the possible origin of the insulating behavior. These frozen electrons can be gradually reactivated into mobile states above a threshold of electric field. This experimental evidence calls for further investigation into the underlying mechanism of the bulk quantum Hall effect and field-induced phase transitions in pentatellurides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.