Abstract

The so-called metamagnetic shape memory alloys transform from a ferromagnetic austenite into a weak magnetic martensitic phase, thus the application of a magnetic field, stabilizing the high magnetization phase, can induce the reverse martensitic transformation. Moreover, the martensitic transformation itself becomes arrested as its temperature range is lowered by the application of high enough magnetic fields. In this work the effect of the magnetic field on a Ni-Mn-In-Co metamagnetic shape memory has been studied by SQUID magnetometry. The arrest of the transformation produced by the field results in metastable states, whose evolution when the field is removed or reduced, follows logarithmic time dependence. The observed behavior is interpreted in terms of the magnetic contribution to the total entropy change associated with the magnetostructural transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.