Abstract

In this paper, we have studied Brownian motion in multidimension phase space in presence of a magnetic field. The nonequilibrium behavior of thermodynamically inspired quantities along the individual component of motion has been studied in detail. Based on the Fokker-Planck description of the stochastic process and entropy balance equation, we have calculated information entropy production and entropy flux at nonequilibrium state. The dependence of these quantities on time, magnetic field, and thermal bath is studied. In this context, we have observed that there exists extremum behavior in the dynamics and the applied magnetic field breaks the equivalence in motion of the components in the nonequilibrium state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call