Abstract

As another step towards understanding the long-term evolution of the magnetic field in neutron stars, we provide the first simulations of ambipolar diffusion in a spherical star. Restricting ourselves to axial symmetry, we consider a charged-particle fluid of protons and electrons carrying the magnetic flux through a motionless, uniform background of neutrons that exerts a collisional drag force on the former. We also ignore the possible impact of beta decays, proton superconductivity, and neutron superfluidity. All initial magnetic field configurations considered are found to evolve on the analytically expected time-scales towards "barotropic equilibria" satisfying the "Grad-Shafranov equation", in which the magnetic force is balanced by the degeneracy pressure gradient, so ambipolar diffusion is choked. These equilibria are so-called "twisted torus" configurations, which include poloidal and toroidal components, the latter restricted to the toroidal volumes in which the poloidal field lines close inside the star. In axial symmetry, they appear to be stable, although they are likely to undergo non-axially symmetric instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call