Abstract

Semisolid flow batteries are expected to be applied to large-scale energy storage fields due to the combination of the high energy density of rechargeable batteries and the flexible design of flow batteries. However, electronic conductivity, specific capacity, and viscosity of slurry electrodes are generally mutually restrictive. Here, a new concept of semisolid flow batteries based on magnetic modification slurry electrode is proposed and the electrochemical performance of the semisolid electrode is expected to be improved by close contact and enhanced electronic conductivity between the active particles with the aid of external magnetic field. This concept is further demonstrated using superparamagnetic LiMn2 O4 -Fe3 O4 -carbon nanotube composite as semisolid cathode. It achieves a capacity of 113.7 mAh g-1 at a current density of 0.5mA cm-2 with the aid of external magnetic field (about 0.4 T), which is about 21% higher than that without external magnetic field. Simulation study also reveals this improvement mainly resulted from the increase of the conductive paths of electrons after the rearrangement of the active particles under the external magnetic field. It is believed that this strategy gives a new and effective method for controlling the viscosity and electronic conductivity of the slurry electrodes and related flowable electrochemical energy storage systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.