Abstract

Here, a strategy to regulate the electron density distribution by integrating NiFe layered double hydroxides (NiFe-LDH) nanosheets with Co3 O4 nanowires to construct the NiFe-LDH/Co3 O4 p-n heterojunction supported on nickel foam (NiFe-LDH/Co3 O4 /NF) for electrocatalytic oxygen evolution reaction (OER) is proposed. The p-n heterojunction can induce the charge redistribution in the heterogeneous interface to reach Fermi level alignment, thus modifying the adsorption free energy of *OOH and improving the intrinsic activity of the catalyst. As a result, NiFe-LDH/Co3 O4 /NF exhibits outstanding OER performance with a low overpotential of 274mV at a current density of 50mAcm-2 and long-time stability over 90h. Moreover, NF can serve as a magnetic core that induces the exchange bias effect between the magnetic substrate and the active species under the action of the magnetic field, resulting in decreased magnetoresistance and weakened scattering of spin electrons, which further lowers the OER overpotential by 25mV @ 50mAcm-2 under a 10000G magnetic field. This work provides a new perspective on the design of p-n heterojunction catalysts and a deeper understanding of the magnetic field-enhanced electrocatalytic reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.