Abstract

The excited trip-sextet (6T1) state of chloro-(3-methylimidazol)-(meso-tetraphenylporphyrinato) chromium(III) (CrIIIP) is quenched by 1,1′-dibenzyl-4,4′-bipyridinium (BV2+) in acetonitrile through electron transfer to give 5(CrIIIP·+) and 2BV·+. The intermediate is a geminate ion pair in the sextet (Sx) state 6[5(CrIIIP·+) 2BV·+], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield (ΦFI) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole—dipole interaction within 5(CrIIIP·+), this interaction effectively induces the Sx → Qa conversion of [5(CrIIIP·+)2BV+] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole—dipole interaction, the Sx → Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.