Abstract

The apparent conflict between literature evidence for (i) radical pair (RP) stabilization in adenosylcobalamin (AdoCbl)-dependent enzymes and (ii) the manifestation of magnetic field sensitivity due to appreciable geminate recombination of the RP has been reconciled by pre-steady-state magnetic field effect (MFE) investigations with ethanolamine ammonia lyase (EAL). We have shown previous stopped-flow MFE studies to be insensitive to magnetically induced changes in the net forward rate of C-Co homolytic bond cleavage. Subsequently, we observed a magnetic-dependence in the continuous-wave C-Co photolysis of free AdoCbl in 75% glycerol but have not done so in the thermal homolysis of this bond in the enzyme-bound cofactor in the presence of substrate. Consequently, in the enzyme-bound state, the RP generated upon homolysis appears to be stabilized against the extent of geminate recombination required to observe an MFE. These findings have strong implications for the mechanism of RP stabilization and the unprecedented catalytic power of this important class of cobalamin-dependent enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.