Abstract

We performed spectroscopy of the magnetic field effect (MFE) including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in annealed and pristine fullerene C60 thin films, as well as magneto-conductance (MC) in organic diodes based on C60 interlayer. The hyperfine interaction has been shown to be the primary spin mixing mechanism for the MFE in the organics. In this respect, C60 is a unique material because 98.9% of the carbon atoms are 12C isotope, having spinless nucleus and thus lack hyperfine interaction. In spite of this, we obtained substantial MPA (up to ∼15%) and significant MC and MPL in C60 films and devices, and thus mechanisms other than the hyperfine interaction are responsible for the MFE in this material. Specifically, we found that the MFE(B) response is composed of narrow (∼10 mT) and broad (>100 mT) components. The narrow MFE(B) component is due to spin-dependent triplet exciton recombination in C60, which dominates the MPA(B) response at low pump intensities in films, or the MC response at small current densities in devices. In contrast, the broad MFE(B) component dominates the MPA(B) response at high pump intensities (or large current densities for MC(B)) and is attributed to spin mixing in the polaron pairs spin manifold due to g-factor mismatch between the electron- and hole-polarons in C60. Our results show that the organic MFE has a much broader scope than believed before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.