Abstract

A theory of the magnetic field driven (semi)metal-insulator phase transition is developed for planar systems with a low density of carriers and a linear (i.e., relativisticlike) dispersion relation for low-energy quasiparticles. The general structure of the phase diagram of the theory with respect to the coupling constant, the chemical potential, and the temperature is derived in two cases, with and without an external magnetic field. The conductivity and resistivity as functions of temperature and magnetic field are studied in detail. An exact relation for the value of the ``offset'' magnetic field ${B}_{c},$ determining the threshold for the realization of the phase transition at zero temperature, is established. The theory is applied to the description of a recently observed phase transition induced by a magnetic field in highly oriented pyrolytic graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.