Abstract

The magnetic field dependence of the oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic field penetration depth \lambda_{ab} was studied in the hole-doped high-temperature cuprate superconductors YBa_2Cu_4O_8, Y_0.8Pr_0.2Ba_2Cu_3O_7-\delta, and Y_0.7Pr_0.3Ba_2Cu_3O_7-\delta. It was found that \lambda_ab for the ^{16}O substituted samples increases stronger with increasing magnetic field than for the ^{18}O ones. The OIE on \lambda_ab decreases by more than a factor of two with increasing magnetic field from \mu_0H=0.2 T to \mu_0H=0.6 T. This effect can be explained by the isotope dependence of the in-plane charge carrier mass m^\ast_{ab}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.