Abstract

The effective $g$ factor of holes is measured in modulation-doped ZnSe/(Zn,Mg)(S,Se) quantum wells and from surface-state $p$-doped CdTe/(Cd,Mg)Te quantum wells by time-resolved pump-probe Kerr rotation. The measurements are performed at a temperature of 1.7 K and in magnetic fields up to 5 T applied in the Voigt geometry with orientation perpendicular to the quantum-well growth axis. The absolute value of the in-plane hole $g$ factor increases with growing magnetic field in both studied heterostructures. A theoretical model is developed that considers the influence of magnetic field and interface mixing of heavy-hole and light-hole states on the $g$ factor. The model results are in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.