Abstract

Three types of bismuth-based bulk samples were prepared through uniaxial pressing at room temperature, hot isostatic pressing (HIP) and drawing and rolling. Transport current properties were characterized in a steady field up to 1.12 T at 77 K (T/Tc=0.75). The Josephson weak-link decoupling fields have been found to be 5 mT for the cold-pressed pellet and 30 mT for the HIPed pellet and the rolled tape. At the decoupling field the transport critical current density,Jc, drops 80% from 124 (OT) to 29 A cm−2 (5 mT) for the cold-pressed pellet, 80% from 582 (OT) to 126 A cm−2 (30 mT) for the HIPed sample and 50% from6500 (0 T) to 2850 A cm−2 (30 mT) for the rolled tape. In the flux flow regime, whereB is perpendicular to thec-axis a modified Kim's modelJc=(α/B0)/[(1+B/B0)]n can be used to describe the field dependence of the critical current density, Jc, in the field range 0.2–1.12 T. The effective upper critical fields were estimated to be 0.98, 1.54 and 1.94 T for the three types of samples, respectively. An adjustable range ofBc2 for bismuth-based bulk highTc superconductors is given. Flux shear may operate in these materials. The prediction of this pinning mechanism is yielded from fitting the equation qualitatively. WhenB is parallel to thec-axis, the absence of strongly intragranular flux-pinning is emphasized by the poor flux flow regime for the rolled tape sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.