Abstract

The magnetic field dependence of electron spin polarization (ESP), generated in free radicals when they encounter photoexcited triplets, was measured experimentally and analyzed theoretically. The time-resolved electron paramagnetic resonance measurements were performed with a microwave setup consisting of low-loss dielectric ring resonators with tunable microwave frequencies and the corresponding magnetic fields. The ESP of the radical was found in the magnetic field range of 170-370 mT, and the results of the calculation based on the numerical solution of the stochastic Liouville equation were found to be in line with the experimental data showing that ESP decreases when the magnetic field increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.