Abstract

This paper reports a multifunctional magnetic‐photoelectric laminate device based on the integration of spintronic material (La0.7Sr0.3MnO3) and multiferroic (Ni‐doped BiFeO3), in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields. More obviously, photocurrent density (J) of the laminate was largely enhanced, the change rate of J up to 287.6% is obtained. This sensing function effect should be attributed to the low‐field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material. The laminate perfectly combines the functions of sensor and controller, which can not only reflect the intensity of environmental magnetic field, but also modulate the photoelectric conversion performance. This work provides an alternative and facile way to realize multi‐degree‐of‐freedom control for photoelectric conversion performances and lastly miniaturize multifunction device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.