Abstract

The effect of internal and external magnetic fields on the separation of antifungal drugs by centrifugal acceleration thin-layer chromatography was reported for the first time. External and internal magnetic fields were applied using neodymium magnets and CoFe2O4@SiO2 ferromagnetic nanoparticles. Separation of ketoconazole and clotrimazole was performed using a mobile phase consisting of n-hexane, ethyl acetate, ethanol, and ammonia (2.0:2.0:0.5:0.2, v/v). The influence of the magnetic field on the entire chromatographic system led to changes in the properties of the stationary and mobile phases and the analytes affecting the retention factor, shape, and width of the separated rings. The extent of this impact depended on the structure of the analyte and the type and intensity of the magnetic field. In the presence of the external magnetic field, there were more significant changes in the chromatographic parameters of the drugs, especially the width of the separated rings, and ketoconazole was more affected than clotrimazole. The changes are conceivably due to the effect of the magnetic field on the analyte distribution between the stationary and mobile phases, which is also caused by the possibility of the magnetic field affecting the viscosity, surface tension, and surface free energy between the stationary and mobile phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call