Abstract

Single-wall carbon nanotubes (SWNTs) were dispersed in a polyethylene terephthalate (PET) matrix by solution blending and then cast onto a glass substrate to create flexible films. Various SWNT loading concentrations were implemented (0.5, 1.0, and 3.0wt%), and the processing method was repeated to produce films in the presence of magnetic fields (3.0 and 9.4T). Alignment of the SWNTs in the PET matrix was characterized by Raman spectroscopy. Impedance spectroscopy was utilized to study the electrical behavior of the nanocomposites. It was concluded that SWNT concentration and dispersion are the key variables for improving electrical conductivity, while alignment plays a secondary role. Interestingly, it appears that a magnetic field may prove to be a novel method for improving the dispersion of unmodified SWNTs by disrupting van der Waals interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.