Abstract

The anisotropy of magnetic susceptibility (AMS) of 351 specimens from 51 sites across the Ailao Shan–Red River shear zone (ASRR) was measured to determine its magnetic fabric. Rocks range westward from core schistose gneiss, through low-grade schist, to Triassic sediment. Magnetic ellipticity analysis shows that 41 of 51 sites have an oblate compressional fabric and the other 10 sites have a prolate fabric. P J value drops by 22.4% in the low-grade schist and by 27.4% in the Triassic sediment on average with respect to the gneiss, suggesting a rapid decrease of deformational intensity. The directions of principal susceptibilities are closely related to the deformation of the Ailao Shan–Red River shear zone. The susceptibility plane always coincides with the schistosity or cleavage plane. Most of the maximum susceptibility axes trend NW–SE. In the shear zone, the maximum susceptibility axes ( K max) are parallel to the lineation within the foliation plane. With increasing distance from the shear zone, there is a trend that they become parallel to the down-dip of reverse faults or cleavage. This indicates changes in deformation mode, inside and outside the shear zone. Within the shear zone, horizontal movement is dominant. Outside, shortening prevails. The overall minimum magnetic axes align NE–SW with subhorizontal to low dip angles, suggesting that the dominant shortening is NE–SW directed. Caution should be exercised when AMS is used to determine shear sense in strong shear zones because the angle between the minimum susceptibility axis ( K min) and pole of foliation is small, and also because the attitude of foliation varies from place to place. They result in unreliable or even wrong shear sense. Another important result is the axial ratio of magnetic susceptibility ellipsoid along the study section. With these data, it is possible to establish an axial ratio relationship between the finite strain ellipsoid and magnetic susceptibility ellipsoid for quantitative calculation of offset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.